Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores

نویسندگان

  • Pratibha Pandey
  • Merwyn S Packiyaraj
  • Himangini Nigam
  • Gauri S Agarwal
  • Beer Singh
  • Manoj K Patra
چکیده

Two different kinds of CuO nanoparticles (NPs) namely CuO nanorods (PS2) and multi-armed nanoparticles (P5) were synthesized by wet and electrochemical routes, respectively. Their structure, morphology, size and compositions were characterized by SEM, EDX and XRD. The NPs demonstrated strong bactericidal potential against Bacillus anthracis cells and endospores. PS2 killed 92.17% of 4.5 × 10(4) CFU/mL B. anthracis cells within 1 h at a dose of 1 mg/mL. Whereas P5 showed a higher efficacy by killing 99.92% of 7 × 10(5) CFU/mL B. anthracis cells within 30 min at a dose of 0.5 mg/mL and 99.6% of 1.25 × 10(4) CFU/mL B. anthracis cells within 5 min at a dose of 2 mg/mL. More than 99% of spores were killed within 8 h with 2 mg/mL PS2 in LB media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, characterization and antimicrobial properties of CuO nanoparticles against gram-positive and gram-negative bacterial strains

Nano structured materials have wide range of applications due to their interesting size-dependent chemical and physical properties compared to particles of size in the range of micrometer. Copper oxide nano materials are of interest on account of their potential uses in many technological fields. In this study  CuO nanoparticles were synthesized via simple sol gel method using basic CuSO4<...

متن کامل

Synthesis, characterization and antimicrobial properties of CuO nanoparticles against gram-positive and gram-negative bacterial strains

Nano structured materials have wide range of applications due to their interesting size-dependent chemical and physical properties compared to particles of size in the range of micrometer. Copper oxide nano materials are of interest on account of their potential uses in many technological fields. In this study  CuO nanoparticles were synthesized via simple sol gel method using basic CuSO4<...

متن کامل

Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonas hydrophila

Objective(s): CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Materials and Methods: Here, we synthesized Cu...

متن کامل

Testing and Evaluation of Nanoparticle Efficacy on E. Coli, and Bacillus Anthracis Spores

Fast, effective, antimicrobial and antisporicidal methods against biological warfare agents, which include the spores from Bacillus anthracis, are urgently required in the biological warfare agent neutralization arena. Metal nanoparticles, which have been previously shown to have antimicrobial effects against vegetative microbes, show great promise in having likewise efficacy against the more r...

متن کامل

Synthesis of Copper Oxide (CuO) Nanoparticles and Surveying Its Bactericidal Properties against Aeromonas Hydrophila Bacteria

  Background & Objective: CuO is one of the most important transition metal oxides due to its exclusive properties. It is used in various technological applications such as superconductors and gas sensors. Recently, it has been used as an antimicrobial agent against various bacterial species. In this study, we synthesized CuO nanoparticles and evaluated their antibacterial property.    Material...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014